Intracellular Cl− Dependence of Na-H Exchange in Barnacle Muscle Fibers under Normotonic and Hypertonic Conditions
نویسندگان
چکیده
We previously showed that shrinking a barnacle muscle fiber (BMF) in a hypertonic solution (1,600 mosM/kg) stimulates an amiloride-sensitive Na-H exchanger. This activation is mediated by a G protein and requires intracellular Cl-. The purpose of the present study was to determine (a) whether Cl- plays a role in the activation of Na-H exchange under normotonic conditions (975 mosM/kg), (b) the dose dependence of [Cl-]i for activation of the exchanger under both normo- and hypertonic conditions, and (c) the relative order of the Cl-- and G-protein-dependent steps. We acid loaded BMFs by internally dialyzing them with a pH-6.5 dialysis fluid containing no Na+ and 0-194 mM Cl-. The artificial seawater bathing the BMF initially contained no Na+. After dialysis was halted, adding 50 mM Na+ to the artificial seawater caused an amiloride-sensitive pHi increase under both normo- and hypertonic conditions. The computed Na-H exchange flux (JNa-H) increased with increasing [Cl-]i under both normo- and hypertonic conditions, with similar apparent Km values ( approximately 120 mM). However, the maximal JNa-H increased by nearly 90% under hypertonic conditions. Thus, activation of Na-H exchange at low pHi requires Cl- under both normo- and hypertonic conditions, but at any given [Cl-]i, JNa-H is greater under hyper- than normotonic conditions. We conclude that an increase in [Cl-]i is not the primary shrinkage signal, but may act as an auxiliary shrinkage signal. To determine whether the Cl--dependent step is after the G-protein-dependent step, we predialyzed BMFs to a Cl--free state, and then attempted to stimulate Na-H exchange by activating a G protein. We found that, even in the absence of Cl-, dialyzing with GTPgammaS or AlF3, or injecting cholera toxin, stimulates Na-H exchange. Because Na-H exchange activity was absent in control Cl--depleted fibers, the Cl--dependent step is at or before the G protein in the shrinkage signal-transduction pathway. The stimulation by AlF3 indicates that the G protein is a heterotrimeric G protein.
منابع مشابه
Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation
The ion transport mechanism that regulates intracellular pH (pHi) in giant barnacle muscle fibers was studied by measuring pHi and unidirectional Na+ fluxes in internally dialyzed fibers. The overall process normally results in a net acid extrusion from the cell, presumably by a membrane transport mechanism that exchanges external Na+ and HCO-3 for internal Cl- and possibly H+. However, we foun...
متن کاملCyclic AMP-stimulated chloride fluxes in dialyzed barnacle muscle fibers
Unidirectional chloride efflux and influx were studied in giant barnacle muscle fibers that were internally dialyzed. When cyclic 3'5'-adenosine monophosphate (cAMP) was included in the dialysis fluid, both unidirectional fluxes were stimulated by about the same amount. This stimulation was not associated with measurable changes either in membrane electrical conductance or with net movements of...
متن کاملThe interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers
The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS-sensitive Cl- efflux was sharply dependent up...
متن کاملCalcium Efflux from Barnacle Muscle Fibers
Calcium-45 was injected into single giant barnacle muscle fibers, and the rate of efflux was measured under a variety of conditions. The rate constant (k) for (45)Ca efflux into standard seawater averaged 17 x 10(-4) min(-1) which corresponds to an efflux of about 1-2 pmol/cm(2).s. Removal of external Ca (Ca(o)) reduced the efflux by 50%. In most fibers about 40% of the (45)Ca efflux into Ca-fr...
متن کاملProperties of sodium pumps in internally perfused barnacle muscle fibers
To study the properties of the Na extrusion mechanism, giant muscle fibers from barnacle (Balanus nubilus) were internally perfused with solutions containing tracer 22Na. In fibers perfused with solutions containing adenosine 5'-triphosphate (ATP) and 30 mM Na, the Na efflux into 10 mM K seawater was approximately 25-30 pmol/cm2.s; 70% of this efflux was blocked by 50-100 microM ouabain, and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 110 شماره
صفحات -
تاریخ انتشار 1997